Undergraduate Course

Department of Industrial Engineering and Engineering Management

Course No.	10620IEEM214000	Required/	Required/Elective course		Elective	
Course Time	W7W8W9 FAFBFC	Room	R827	Size limit	50	
Credits	3					
Math	Resia Sajanga	Engineering		Hours offered	2	
	Dasic Science	Theory	Design	per week	5	
1	0	1	1			
Course Title	DDDDDD Program	ming Design a	nd Application			
Lecturer	Dr. Hareesh []] (hareesh.pillai@ie.nthu.edu.tw)					
ТА	Ms. Yeh Li-chia [] (home.yeh@gmail.com)					
Prerequisite	No prerequisite required. The course will have basic computation concepts refresher in the first week.					

		Integration-DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	<u>20</u> %
Core capability to be cultivated by this course		Information - [] [] [] [] [] [] [] [] [] [] [] [] []	<u>30</u> %
		Interaction-	<u>20</u> %
		Innovation/Ideas-	<u>10</u> %
		Internationalization-	<u>20</u> %
Course Description	This course is designed for undergraduate students.		
	Software development is the process of conceiving, specifying, designing, programming, documenting, testing, and bug fixing involved in creating and maintaining software components. The Programming Design and Application course is focused on design for software programming using Unified Modeling Language outlined in ISO/IEC 19501:2005 standard and application of the generated design using programming paradigms such as procedural (C programming), object-oriented (Java),		

	problem abstraction and algorithm design. A programming language is a vocabulary to				
	translate this design into implementation. A successful implementation requires				
	understanding a host of design tools, constraints, programming methodologies, and data storage components. This course is designed to understand and practice a selected				
	variety of such components with an emphasis on real-world applications to engineering				
	problems.				
	• Kanetkar, Y. P. (2016). <i>Let us C</i> . BPB publications.				
Textbook	• Date, C. J. (1997). A guide to the SQL standard: a user's guide to the standard				
	database language SQL. Addison-Wesley Professional.				
	• Pressman, R. S. (2005). Software engineering: a practitioner's approach.				
	Palgrave Macmillan.				
	• Martin, J., & Odell, J. J. (1994). <i>Object-oriented methods</i> . Prentice Hall PTR.				
References	• ISO/IEC 19501:2005 - Information technology open distributed processing				
	Unified Modeling Language (UML) Version 1.4.2				
	 https://www.w3schools.in/java-tutorial/ 				
	• https://www.w3schools.com/php/				
	The primary teaching objective will be towards enabling students to think logically and				
Teaching Method	in the context of real-world design and applications. The course is planned as a practice				
	centered applications course.				
Teaching software	PowerPoint, Turbo C/ GCC, Java development kit, draw.io, WAMP				
Syllabus	Week 1. Class Introduction and Overview:				
	Week 2. Programming Logic and Techniques:				
	I-P-O cycle, Understanding the difference between code, program, and software, the				
	role of design in programming, software development life cycle, flow charts, integrated				
	development environments, rapid application development.				
	Week 3. Procedural Programming using C:				
	Overview of programming paradigms, C programming, running C programs, the				
	structure of C programs, C's standard libraries, data types, language constructs, arrays,				
	pointers, structures, unions.				
	Week 4. Lab Practice Session:				
	Week 5. Fundamentals of Object-Oriented Design:				
	Fundamental concepts of object orientation: object, class, abstraction, interface,				
	implementation, aggregation, composition, generalization, sub-class and				
	polymorphism, architecture style, Object Oriented Methodology (OOM), the advantage				
	of OOM, OOP concepts with Java programming.				
	Week 6. Student Project Preliminary Discussion:				
	Week 7. Lab Practice Session:				
	Week 8. Programming Design with UML:				
	Visual modeling, component and model-driven development using Unified Markup				
	Language (UML), structural UML diagrams (class diagram, package diagram, object				
	diagram, component diagram, composite structure diagram, deployment diagram),				

	behavioral UML diagrams (activity diagram, sequence diagram, use case diagram, state			
	diagram, communication diagram, interaction overview diagram, timing diagram).			
	Week 9. Midterm:			
	Week 10. Structured Query Language using MySQL:			
	Storage in I-P-O cycle, the role of data in software, modeling data using data flow			
	diagram, ER modeling, relational database using open source MYSOL, data definition			
	language (create, alter, drop), data manipulation language (Select INSERT, UPDATE			
	and DELETE).			
	Week 11. Lab Practice Session:			
	Week 12. Web Programming using WAMP:			
	Web distribution, HTML, HTML 5, static rendering, dynamic rendering, just in time			
	pages (JIT), session management concepts, 3-tier architecture, fat client, fat server.			
	setting up a web server using Windows Apache MySOL and Hypertext Preprocessor			
	(WAMP). PHP script, syntax, tags.			
	Week 13. Lab Practice Session and Project Discussion:			
	Week 14. Programming with Database Connectivity:			
	File handling in C programming, programming for database connectivity, java database			
	connectivity (JDBC), windows open database connectivity (ODBC), database access			
	concepts through PHP.			
	Week 15. Lab Practice Session/ Optional Final Team Presentation:			
	Week 16. Applications Programming Interface (API) Programming:			
	API basics, the API economy, API infrastructure, networking layers, cloud computing			
	disruption, API implementation, control, security, integration benefits, interoperability,			
	database connectivity.			
	Week 17. Lab practice session and Team Project Update/ Optional Final Team			
	Presentation:			
	Week 18. Team Project Final Presentation:			
Evaluation	The course includes weekly programming practice homework and sessions mainly to			
	apply concepts discussed in class, review material presented in class, and engage			
	students in mini-quizzes in class. Along with these small quizzes, there is a midterm			
	written exam, and a final project. Grades will be based on individual and project			
	performance. Individual grades come from class attendance, homework performance, a			
	midterm examination, and a final group project. This is an English taught course,			
	student presentation in English is highly recommended alternatively oral			
	presentation is Chinese allowed, however the PowerPoint slides and final report			
	word file has to be in English only.			
	Attendance: 10%			
	Class interactions: 10%			
	Midterm: 25%			
	Homework: 30%			

	Group project – 25%
Course website	Lecture notes (TBU)